Los calculistas, el caso de Zerah Colburn



Zerah ColburnEn el siglo XIX comenzaron a ponerse de moda y a ser una atracción los calculistas, es decir, personas que únicamente con su cabeza realizaban cálculos totalmente imposibles y astronómicos para el resto de mortales. Los teatros de medio mundo eran lugar de representaciones matemáticas, quién lo diría a día de hoy, y el público acudía en masa a ver a estos hombres.

Zerah Colburn fue el primer calculista profesional del que se conocen infinidad de detalles y del que existe una buena cantidad de documentación. Nació en EEUU en 1804 y murió con tal sólo 35 años. Cuando era un niño, pensaban que era algo retrasado mentalmente pero al poco tiempo de comenzar su educación su padre se dio cuenta de su habilidad para multiplicar y comenzó a ponerle problemas cada vez más complejos. A pesar de todo ello, su vida no fue demasiado exitosa.

En una ocasión, le pidieron que multiplicara 21.734 por 543 y al instante respondió: “11.801.562”. Cuando le preguntaron cómo lo había hecho dijo: “he visto que 543 es igual a tres veces 181. Entonces he multiplicado primero 21.734 por 3 y luego el resultado por 181”. No tengo yo muy claro que este camino “alternativo” sea más corto para la mayoría de nosotros, pero a Colburn, que tenía entonces tan sólo 8 años, le parecía algo perfectamente lógico.



Los calculistas, el caso de Zerah Colburn




Cálculo ultrarrápido
La capacidad para efectuar rápidamente operaciones aritméticas mentales parece tener sólo una moderada correlación con la inteligencia general y menor aún con la intuición y creatividad matemáticas. 

Algunos de los matemáticos más sobresalientes han tenido dificultades al operar, y muchos «calculistas ultrarrápidos» profesionales (aunque no los mejores) han sido torpes en todas las demás capacidades mentales. Sin embargo, algunos grandes matemáticos han sido también diestros calculistas mentales. Carl Friedrich Gauss por ejemplo, podía llevar a cabo prodigiosas hazañas matemáticas en la mente. Le gustaba hacer alarde de que aprendió antes a calcular que a hablar. 

Se cuenta que en cierta ocasión su padre, de oficio albañil, estaba confeccionando la nómina general de sus empleados, cuando Friedrich, que entonces tenía 3 años, le interrumpió diciéndole: «Papá, la cuenta está mal...». Al volver a sumar la larga lista de números se comprobó que la suma correcta era la indicada por el niño. Nadie le había enseñado nada de aritmética. 

John von Neumann era un genio matemático que también estuvo dotado de este poder peculiar de computar sin usar lápiz ni papel. Robert Jungk habla en su libro Brighter than a Thousand Suns acerca de una reunión celebrada en Los Álamos, durante la Segunda Guerra Mundial, en la que von Neumann, Enrico Fermi, Edward Teller y Richard Feynman lanzaban continuamente ideas.
 Siempre que había que efectuar un cálculo matemático, Fermi, Feynman y von Neumann se ponían en acción. Fermi empleaba una regla de cálculo, Feynman una calculadora de mesa, y von Neumann su cabeza. «La cabeza», escribe Jungk (citando a otro físico), «terminaba normalmente la primera, y es notable lo próximas que estaban siempre las tres soluciones».


La capacidad para el cálculo mental de Gauss, von Neumann y otros leones matemáticos como Leonhard Euler y John Wallis puede parecer milagrosa; palidece, sin embargo, ante las hazañas de los calculistas profesionales, una curiosa raza de acróbatas mentales que floreció a lo largo del siglo XIX en Inglaterra, Europa y América. 

Muchos comenzaron su carrera de niños. Aunque algunos escribieron acerca de sus métodos y fueron examinados por psicólogos, probablemente ocultaron la mayoría de sus secretos, o quizás ni ellos mismos entendían del todo como hacían lo que hacían. Zerah Colburn, nacido en Cabot, Vt., en 1804, fue el primero de los calculistas profesionales. Tenía seis dedos en cada mano y en cada pie, al igual que su padre, su bisabuela y al menos uno de sus hermanos. (Se le amputaron los dedos de sobra cuando tenía alrededor de 10 años. Nos preguntamos si acaso fue eso lo que le alentó en sus primeros esfuerzos por contar y calcular.) El niño aprendió la tabla de multiplicar hasta el 100 antes de que pudiese leer o escribir. Su padre, un pobre granjero, se dio cuenta rápidamente de sus posibilidades comerciales, y cuando el rapaz tenía solamente seis años le llevó de gira por primera vez. Sus actuaciones en Inglaterra, cuando tenía ocho años, están bien documentadas. Podía multiplicar cualesquiera números de cuatro dígitos casi instantáneamente, pero dudaba un momento ante los de cinco. 

Cuando se le pedía multiplicar 21.734 por 543. decía inmediatamente 11.801.562. Al preguntarle cómo lo había hecho, explicó que 543 es igual a 181 veces 3. Y como era más fácil multiplicar por 181 que por 543, había multiplicado primero 21.734 por 3 y luego el resultado por 181. Washington Irving y otros admiradores del niño recaudaron dinero suficiente para enviarlo a la escuela, primero en París y luego en Londres. 

No se sabe si sus poderes de cálculo decrecieron con la edad o si perdió el interés por actuar. Lo cierto es que volvió a América cuando tenía 20 años, ejerciendo luego otros diez como misionero metodista. En 1833 publicó en Springfield, Mass., su pintoresca autobiografía titulada A Memoir of Zerah Colburn: written by himself. . . with his peculiar methods of calculation. En el momento de su muerte, a los 35 años, enseñaba lenguas extranjeras en la Universidad de Norwich en Northfield, Vt.

Paralelamente a la carrera profesional de Colburn se desarrolla en Inglaterra la de George Parker Bidder, nacido en 1806 en Devonshire. Se dice que adquirió la destreza en el cálculo aritmético jugando con piedrecitas y botones, porque su padre, un picapedrero, sólo le enseñó a contar. 

Tenía nueve años cuando se fue de gira con su progenitor. Entre las preguntas que le planteaban los espectadores puede elegirse la que sigue: si la Luna dista 123.256 millas de la Tierra y el sonido viaja a cuatro millas por minuto ¿cuánto tiempo tarda éste en hacer el viaje de la Tierra a la Luna (suponiendo que pudiese)?

 En menos de un minuto el niño respondía: 21 días, 9 horas y 34 minutos. Cuando se le preguntó (a los 10 años) por la raíz cuadrada de 119.550.669.121, contestó 345.761 en 30 segundos. 

En 1818, cuando Bidder tenía 12 años y Colburn 14, coincidieron en Derbyshire, donde hubo un cotejo. Colburn da a entender en sus memorias que ganó el concurso, pero los periódicos de Londres concedieron la palma a su oponente. 

Los profesores de la Universidad de Edimburgo persuadieron al viejo Bidder para que les confiase la educación de su hijo. El joven se desenvolvió bien en la universidad y finalmente llegó a ser uno de los mejores ingenieros de Inglaterra. 

Los poderes de cálculo de Bidder no decrecieron con la edad. Poco antes de su muerte, acaecida en 1878, alguien citó delante de él que hay 36.918 ondas de luz roja por pulgada. Suponiendo que la velocidad de la luz es de 190.000 millas por segundo, ¿cuántas ondas de luz roja, se preguntaba, llegarán al ojo en un segundo? «No hace falta que lo calcules», dijo Bidder. «El número de vibraciones es 444.433 .651.200.000».


Tal vez haya sido Alexander Craig Aitken el mejor de los calculistas mentales recientes. Profesor de matemáticas de la Universidad de Edimburgo, nació en Nueva Zelanda en 1895 y fue coautor de un libro de texto clásico, The Theory of Canonical Matrices, en 1932. 

A diferencia de otros calculistas ultrarrápidos, no comenzó a calcular mentalmente hasta la edad de 13 años, siendo el álgebra, no la aritmética, lo que despertó su interés. 

En 1954, casi 100 años después de la histórica conferencia de Bidder, Aitken pronunció otra en la Sociedad de Ingenieros de Londres sobre el tema «El arte de calcular mentalmente: con demostraciones». El texto fue publicado en las Transactionsde la Sociedad (Diciembre, 1954), con el fin de conservar otro testimonio de primera mano de lo que ocurre dentro de la mente de un calculista mental rápido. 

Un prerrequisito esencial es la capacidad innata para memorizar números rápidamente. Todos los calculistas profesionales hacen demostraciones de memoria. Cuando Bidder tenía 10 años, pidió a alguien que le escribiera un número de cuarenta dígitos y que se lo leyera. Lo repitió de memoria inmediatamente. 

Al final de una representación, muchos calculistas eran capaces de repetir exactamente todos los números con los que habían operado. Hay trucos mnemotécnicos mediante los que los números pueden transformarse en palabras, que a su vez pueden memorizarse por otro método, pero tales técnicas son demasiado lentas para emplearlas en un escenario y no hay duda de que ningún maestro las empleaba. 

«Nunca he utilizado reglas mnemotécnicas», dijo Aitken, «y recelo profundamente de ellas. No hacen más que perturbar con asociaciones ajenas e irrelevantes una facultad que debe ser pura y límpida». 

Aitken mencionó en su conferencia haber leído recientemente que el calculista francés contemporáneo Maurice Dagbert había sido culpable de una aterradora pérdida de tiempo y energía» por haber memorizado pi (v.) hasta el decimal 707 (el cálculo había sido hecho por William Shanks en 1873). «Me divierte pensar», dijo Aitken, «que yo lo había hecho algunos años antes que Dagbert y sin encontrar ninguna dificultad. Sólo necesité colocar los digitos en filas de cincuenta, dividir cada una de ellos en grupos de cinco y luego leerlas a un ritmo particular. De no ser tan fácil habría sido una hazaña reprensiblemente inútil». 

Veinte años después, cuando los computadores modernos calcularon pi con miles de cifras decimales, Aitken se enteró de que el pobre Shanks se había equivocado en los 180 últimos dígitos. «De nuevo me entretuve», continuó Aitken «en aprender el valor correcto hasta el decimal 1000, y tampoco entonces tuve dificultad alguna, excepto que necesitaba 'reparar' la unión donde había ocurrido el error de Shanks. El secreto, a mi entender, es relajarse, la completa antítesis de la concentración tal como normalmente se entiende. El interés es necesario. Una secuencia de números aleatorios, sin significación aritmética o matemática, me repelería. Si fuera necesario memorizarlos, se podría hacer, pero a contrapelo». Aitken interrumpió su conferencia en este punto y recitó pi hasta el dígito 250, de un modo claramente rítmico. Alguien le pidió comenzar en el decimal 301. Cuando había citado cincuenta dígitos se le rogó que saltase al lugar 551 y dar 150 más. Lo hizo sin error, comprobándose los números en una tabla de pi